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Abstract The class KKM(X, Y) (resp., s-KKM(X, Y, Z)) of set-valued mappings
with KKM (resp., s-KKM) property is introduced in FC-spaces without any convexity
structure. Some generalized KKM (resp., s-KKM) type theorems are proved in FC-
spaces under much weak assumptions. As applications, some new section theorems
and coincidence theorems are established in FC-spaces. These theorems generalize
many known results in literature. The further applications of these results will be given
in a follow-up paper.
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1 Introduction

In 1929, Knaster et al. [1] established the well-known KKM theorem in finite dimen-
sional spaces. In 1961, Fan [2] generalized the classical KKM theorem to infinite
dimensional topological vector spaces. Since then, there exist many generalizations
and applications of KKM type theorems obtained in underlying spaces (see, e.g. [3–9]).

For a set X, we denote by 2X and 〈X〉 the family of all subsets of X and the family
of all nonempty finite subsets of X, respectively. If X is a topological vector space and
A is a subset of X, we denote by co(A) and A the convex hull of A and the closure of
A in X, respectively.

In 1996, Chang and Yen [10] introduced the class KKM(X, Y) of set-valued map-
pings which is defined as follows:

Definition 1.1 Let X be a convex subset of a topological vector space and Y be a topo-
logical space. Let S, T : X → 2Y be set-valued mappings such that T(co(N)) ⊂ S(N)

for each N ∈ 〈X〉, then S is said to be a generalized KKM mapping with respect to
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T. A mapping T : X → 2Y is said to have KKM property if for each generalized
KKM mapping S with respect to T, the family {S(x) : x ∈ X} has the finite intersection
property. Write

KKM(X, Y) = {T : X → 2Y : T has KKM property}.
The class KKM(X, Y) include the classes V(X, Y) due to Park et al. [11], Uk

c (X, Y)

due to Park and Kim [12], and A(X, Y) due to Ben-El-Mechaiekh and Deguire [13]
as special cases.

Recently Lin et al.[14], Lin and Wang [15] and Lin and Chen [16] further study the
class KKM(X, Y) in topological vector spaces. They established some new KKM type
theorems, coincidence theorems, fixed point theorems and the equivalent relations
between the KKM type theorems and coincidence theorems. As applications, some
existence theorems of solutions for generalized vector equilibrium problems are also
obtained under suitable assumptions.

In most of known KKM type theorems, the convexity assumptions play a crucial
role, which strictly restricts the applicable area of these KKM type theorems. Hence
Deng and Xia [9], Ding [7] and Ding et al. [8] established some generalized R-KKM
type theorems for generalized R-KKM mappings with compactly closed values and
with compactly open values in general topological spaces without any convexity struc-
ture, respectively.

In this paper, new classes KKM(Y, Z) and s-KKM(X, Y, Z) of set-valued mappings
is introduced in FC-spaces without any convexity structure. Some generalized KKM
and s-KKM type theorems for set-valued mappings with transfer compact closed val-
ues are established in Finitely Continous (FC)-spaces under much weak assumptions.
As applications, some new section theorems and coincidence theorems are obtained
in FC-spaces. These theorems unity and generalize many known results in literature.
The further applications of our results will be given in a follow-up paper.

2 Preliminaries

Let �n be the standard n-dimensional simplex with vertices e0, e1, . . . , en. If J is a
nonempty subset of {0, 1, . . . , n}, we denote by �J the convex hull of the vertices
{ej : j ∈ J}. For topological space Y, a subset A of Y is said to be compactly open
(resp., compactly closed) if for each nonempty compact subset K of Y, A

⋂
K is open

(resp., closed) in K. The compact closure and the compact interior of A (see [17]) are
defined by

ccl(A) =
⋂

{B ⊂ Y : A ⊂ B and B is compactly closed in Y},

c int(A) =
⋃

{B ⊂ Y : B ⊂ A and B is compactly open in Y}.
It is easy to see that for each nonempty compact subset K of Y, we have ccl(A)

⋂
K =

clK(A
⋂

K), c int(A)
⋂

K = intK(A
⋂

K) and ccl(Y \A) = Y \cint(A). A subset A
of Y is compactly open (resp., compactly closed) if and only if cint(A) = A (resp.,
ccl(A) = A).

Let Y and Z be topological spaces. A set-valued mapping T : Y → 2Z is said
to be transfer compactly open-valued (resp., transfer compactly closed-valued) on
Y (see [17]) if for each y ∈ Y, each nonempty compact subset K of Z and each
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z ∈ K, z ∈ T(y)
⋂

K (resp., z /∈ T(y)
⋂

K) implies that there exists y′ ∈ Y such
that z ∈ infK(T(y′)

⋂
K) (resp., z /∈ clK(T(y′)

⋂
K)). We observe that the notion of

transfer compactly open-valued (resp. transfer compactly closed-valued) mappings
defined by Lin [18, p. 409] is a special case of the above corresponding notion.

The following result is Lemma 1.1 of Ding [19],

Lemma 2.1 Let Y and Z be topological spaces and G : Y → 2Z a set-valued mapping
with nonempty values. Then the following conditions are equivalent:

(1) G has the compactly local intersection property,
(2) for each compact subset K of Y and for each z ∈ Z, there exists a open subset Oz

of Y (which may be empty) such that Oz
⋂

K ⊂ G−1(z) and K = ⋃
z∈Z(Oz

⋂
K),

(3) for any compact subset K of Y, there exists a set-valued mapping F : Y → 2Z such
that F(y) ⊂ G(y) for each y ∈ Y, F−1(z) is open in Y and F−1(z)

⋂
K ⊂ G−1(z)

for each z ∈ Z, and K = ⋃
z∈Z(F−1(z)

⋂
K).

(4) for each compact subset K of Y and for each y ∈ K, there exists z ∈ Z such that
y ∈ intK(G−1(z)

⋂
K) and

K =
⋃

z∈Z

(G−1(z)
⋂

K) =
⋃

z∈Z

(c intG−1(z)
⋂

K) =
⋃

z∈Z

intK(G−1(z)
⋂

K),

(5) G−1 : Z → 2Y is transfer compactly open-valued on Y.

Lemma 2.2 Let Y and Z be topological spaces and F : Y → 2Z a set-valued mapping
with Y �= F−1(z) for each z ∈ Z. Then the following conditions are equivalent:

(1) F is transfer compactly closed-valued,
(2) the mapping G : Y → 2Z defined by G(y) = Z\F(y) for each y ∈ Y is transfer

compactly open-valued,
(3) for each compact subset K of Z,

⋃

y∈Y

(G(y)
⋂

K) =
⋃

y∈Y

(c intG(y)
⋂

K) =
⋃

y∈Y

intK(K
⋂

G(y)),

(4) for each compact subset K of Z,

⋂

y∈Y

(F(y)
⋂

K) =
⋂

y∈Y

(cclF(y)
⋂

K) =
⋂

y∈Y

clK(K
⋂

F(y)).

Proof (1)⇒ (2) For each y ∈ Y, each compact subset K of Z and each z ∈ K, if
z ∈ K

⋂
G(y) = K

⋂
(Z\F(y)), then z /∈ K

⋂
F(y). By (1), there exists y′ ∈ Y such

that z /∈ clK(K
⋂

F(y′)). Hence z ∈ K\clK(K
⋂

F(y′)) = intK(K
⋂

G(y′)). Hence G
is transfer compactly open-valued. (2)⇒ (1). For each y ∈ Y, each compact subset K
of Z and each z ∈ K, if z /∈ K

⋂
F(y), then z ∈ K\(K

⋂
F(y)) = K

⋂
G(y). By (2),

there exists y′ ∈ Y such that z ∈ intK(K
⋂

G(y′)). Hence z /∈ K\intK(K
⋂

G(y′)) =
clK(K

⋂
F(y′)). Therefore, F is transfer compactly closed-valued. (2)⇔ (3). By (4)

and (5) of Lemma 2.1, the equivalent relation holds. (3)⇒ (4). By (3), we have
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⋂

y∈Y

(F(y)
⋂

K) = K
⋂




⋂

y∈Y

F(y)



 = K
⋂




⋂

y∈Y

(Z\G(y)



 = K
⋂



Z\
⋃

y∈Y

G(y)





= K\



⋃

y∈Y

(
G(y)

⋂
K

)


 = K\
⋃

y∈Y

intK

(
K

⋂
G(y)

)

=
⋂

y∈Y

(
K\intK

(
K

⋂
G(y)

))

=
⋂

y∈Y

clK
(

K\
(

K
⋂

(Z\F(y))
))

=
⋂

y∈Y

clK
(

K
⋂

F(y)
)

.

Therefore (3)⇒ (4) holds.
(4)⇒ (3). By using similar argument of (3)⇒ (4), we can show that (4)⇒ (3) is also
true. This completes the proof.

Remark 2.1 Lemmas 2.1 and 2.2 improve Lemmas 2.1 and 2.5 in [14] respectively.

The following notion was introduced by Ding [20].

Definition 2.1 (Y, ϕN) is said to be a FC-space if Y is a topological space and for
each N = {y0, . . . , yn} ∈ 〈Y〉 where some elements may be same, there exists a con-
tinuous mapping ϕN : �n → Y. If A and B are two subsets of Y, B is said to be
a FC-subspace of Y relative to A if for each N = {y0, . . . , yn} ∈ 〈Y〉 and for any
{yi0 , . . . , yik} ⊂ A

⋂{y0, . . . , yn}, ϕN(�k) ⊂ B where �k = co({ei0 , . . . , eik}). If A = B,
then B is called a FC-subspace of Y.

It is easy to see that the class of FC-spaces includes the classes of convex sets
in topological vector spaces, C-spaces (or H-spaces) [21], G-convex spaces [12], L-
convex spaces [22], and many topological spaces with abstract convexity structure as
true subclasses. Hence, it is quite reasonable and valuable to study various nonlinear
problems in FC-spaces.

Definition 2.2 Let (Y, ϕN) be a FC-space and Z be a topological space. Let T, F :
Y → 2Z be two set-valued mappings. F is said to be a generalized KKM mapping
with respect to T if for each N = {y0, . . . , yn} ∈ 〈Y〉 and each {yi0 , . . . , yik} ⊂ N,
T(ϕN(�k)) ⊂ ⋃k

j=0 F(yij) where �k = co({ei0 , . . . , eik)}. T is said to have the KKM

property if for each generalized KKM mapping F with respect to T, the family {F(y) :
y ∈ Y} has the finite intersection property. Write

KKM(Y, Z) = {T : Y → 2Z : T has the KKM property}.
Clearly, the new class KKM(Y, Z) generalizes the classes KKM(Y, Z) in [10] from

convex subsets of topological vector spaces to FC-spaces.

Definition 2.3 Let X be a nonempty set, (Y, ϕN) be a FC-space and Z be a topo-
logical space. Let s : X → Y be a single-valued mapping, T : Y → 2Z and F :
X → 2Z be two set-valued mappings. F is said to be a generalized s-KKM mapping
with respect to T if for each N = {x0, . . . , xn} ∈ 〈X〉 and each {xi0 , . . . , xik} ⊂ N,
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T(ϕN(�k)) ⊂ ⋃k
j=0 F(xij) where ϕN : �n → 2Y is the continuous mapping in touch

with {s(x0), . . . , s(xn)} ∈ 〈Y〉. T is said to have the s-KKM property if for each gener-
alized s-KKM mapping F with respect to T, the family {F(x) : x ∈ X} has the finite
intersection property. Write

s − KKM(X, Y, Z) = {T : Y → 2Z : T has the s − KKM property}.
The new class s-KKM(X, Y, Z) generalizes the class s-KKM in [23] from convex

subset of topological vector spaces to FC-spaces. If X = Y and s is the identity
mapping IX , then s-KKM(X, Y, Z) = KKM(Y, Z).

By Definitions 2.2 and 2.3, the following result folds.

Lemma 2.3 If T ∈ KKM(Y, Z), then for any s : X → Y, T ∈ s-KKM(X, Y, Z).

Lemma 2.4 Let (Y, ϕN) be a FC-space, M be a FC-subspace of Y, Z be a topological
space and T ∈ KKM(Y, Z). Then T|M ∈ KKM(M, Z).

Proof Suppose that S : M → 2Z is a generalized KKM mapping with respect to T|M,
then, for each N = {y0, . . . , yn} ∈ 〈M〉 ⊂ 〈Y〉 and {yi0 , . . . , yik} ⊂ N, T(ϕN(�k)) ⊂
⋃k

j=0 S(yij). Define a set-valued mapping F : Y → 2Z by

F(y) =
{

S(y), if y ∈ M,
Z, if y ∈ Y\M.

It is easy to see that F is a generalized KKM mapping with respect to T. Since
T ∈ KKM(X, Y), the family {F(y) : y ∈ Y} has the finite intersection property,
which implies the family {S(y) : y ∈ M} has the finite intersection property. Hence
T|M ∈ KKM(M, Z).

Remark 2.2 Lemma 2.4 generalizes Lemma 2.3 of Lin et al. [14] from a convex subset
of a topological vector space to a FC-space.

Lemma 2.5 Let (Y, ϕN) be a FC-space, Z be a topological space and F, G : Y → 2Z

be set-valued mappings. Let P, H : Z → 2Y be defined by P(z) = Y \F−1(z) and
H(z) = Y\G−1(z) for each z ∈ Z. Then the followings conditions are equivalent:

(1) F is a generalized KKM mapping with respect to G,
(2) for each z ∈ Z, H(z) is a FC-subspace of Y relative to P(z).

Proof (1)⇒(2). Suppose (1) is true. If (2) does not hold, then there exist z ∈ Z, N =
{y0, . . . , yn} ∈ 〈Y〉 and {yi0 , . . . , yik} ⊂ N

⋂
P(z) such that

ϕN(�k) �⊂ H(z) = Y\G−1(z).

Hence there exists y ∈ ϕN(�k) such that y ∈ G−1(z), i.e., z ∈ G(y). On the other
hand, since {yi0 , . . . , yik} ⊂ P(z) = Y\F−1(z), we have yij /∈ F−1(z) for all j = 0, . . . , k.

It follows that z /∈ ⋃k
j=0 F(yij). Hence, we have

G(ϕN(�k)) �⊂
k⋃

j=0

F(yij),

which contradicts (1). Hence (2) must hold.
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(2)⇒ (1). Suppose (2) is true. If (1) does not hold, then there exist N = {y0, . . . , yn} ∈
〈Y〉 and {yi0 , . . . , yik} ⊂ N such that

G(ϕN(�k)) �⊂
k⋃

j=0

F(yij).

Hence there exist y ∈ ϕN(�k) and z ∈ G(y) such that z /∈ ⋃k
j=0 F(yij). Hence we have

yij /∈ F−1(z) = Y\P(z) for all j = 0, . . . , k and so {yi0 , . . . , yik} ⊂ N
⋂

P(z). It follows
from (2) that ϕN(�k) ⊂ H(z) = Y\G−1(z). Therefore, y /∈ G−1(z) and z /∈ G(y) which
is a contradiction. Hence (1) must be true.

Remark 2.3 Lemma 2.5 generalizes Proposition 2 of Lin [24] from G-convex space
to FC-space without any convexity structure and the domain and range spaces of
mappings may be different.

3 s-KKM and KKM type theorems

Theorem 3.1 Let X be a nonempty set, (Y, ϕN) be a FC-space and Z be a topological
space. Let s : X → Y be a surjective mapping, F : X → 2Z be a set-valued mapping
and T ∈ s-KKM(X, Y, Z) such that

(1) T(s(X)) is compact in Z,
(2) F is a generalized s-KKM mapping with respect to T with compactly closed values.

Then T(s(X))
⋂ (⋂

x∈X F(x)
)

�= ∅.

Proof By (1), T(s(X)) is compact in Z. Define a set-valued mapping F∗ : X →
2T(s(X)) by

F∗(x) = T(s(X))
⋂

F(x), ∀ x ∈ X.

We claim that F∗ is also a generalized s-KKM mapping with respect to T. Since F is a
generalized s-KKM mapping with respect to T by (2), for each N = {x0, . . . , xn} ∈ 〈X〉
and N1 = {xi0 , . . . , xik} ⊂ 〈N〉, let yi = s(xi), i = 0, . . . , n, then M = {y0, . . . , yn} ∈ 〈Y〉
and M1 = {yi0 , . . . , yik} ⊂ M and we have T(ϕN(�k)) ⊂ ⋃k

j=0 F(xij). Since s is surjec-

tive, it is clear that T(ϕN(�k)) ⊂ T(s(X)). Hence we have

T(ϕN(�k)) ⊂
k⋃

j=0

(
T(s(X))

⋂
F(xij)

)
=

k⋃

j=0

F∗(xij).

This show that F∗ is also a generalized s-KKM mapping with respect to T. Since
T ∈ s-KKM(X, Y, Z) and T(s(X))

⋂
F(x) is closed in T(s(X)) for each x ∈ X, the

family {T(s(X))
⋂

F(x) : x ∈ X} has the finitely intersection property. Since T(s(X))

is compact and F has compactly closed values, Therefore, we have

T(s(X))
⋂

(
⋂

x∈X

F(x)

)

�= ∅.
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Theorem 3.2 Let X be a nonempty set, (Y, ϕN) be a FC-space and Z be a topological
space. Let s : X → Y be a surjective mapping, F : X → 2Z be a set-valued mapping
and T ∈ s-KKM(X, Y, Z) such that

(1) T(s(X)) is compact in Z,
(2) F is a generalized s-KKM mapping with respect to T with transfer compactly

closed values. Then T(s(X))
⋂ (⋂

x∈X F(x)
)

�= ∅.

Proof Define a mapping ccl F : X → 2Z by (cclF)(x) = cclF(x) for each x ∈ X, it
is easy to see that cclF is also a generalized s-KKM mapping with respect to T with
compactly closed values by (2). By Theorem 3.1,

⋂
x∈X(T(s(X))

⋂
cclF(x)) �= ∅. Since

T(s(X)) is compact and F has transfer compactly closed values, by Lemma 2.2, we
have

T(s(X))
⋂

(
⋂

x∈X

F(x)

)

=
⋂

x∈X

(
T(s(X))

⋂
cclF(x)

)
�= ∅.

Theorem 3.3 Let (Y, ϕN) be a FC-space and Z be a topological space. Let F : Y → 2Z

be a set-valued mapping and T ∈ KKM(Y, Z) such that

(1) T is a compact mapping,
(2) F is a generalized KKM mapping with respect to T with transfer compactly closed

values.

Then T(Y)
⋂ (⋂

y∈Y F(y)
)

�= ∅.

Proof The conclusion of Theorem 3.3 holds from Theorem 3.2 with X = Y and s
being the identity mapping IX .

Remark 3.1 Theorem 3.3 generalizes Lemma 2.2 and Theorem 2.2 of Lin et al. [14]
from topological vector spaces to FC-spaces without any convexity structure under
much weak assumptions. Theorem 3.2 further generalizes the above results from the
class KKM(Y, Z) to the class s-KKM(X, Y, Z).

Theorem 3.4 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) is a compact mapping and F, G, M : Y → 2Z be set-valued mappings
such that

(1) F has transfer compactly closed values,
(2) for each y ∈ Y, G(y) ⊂ F(y) and T(y) ⊂ M(y),
(3) for each z ∈ Z, Y\M−1(z) is a FC-subspace of Y relative to Y\G−1(z).

Then T(Y)
⋂ (⋂

y∈Y F(y)
)

�= ∅.

Proof We show that for each N = {y0, . . . , yn} and each {yi0 , . . . , yik} ⊂ N,

T(ϕN(�k)) ⊂
k⋃

j=0

G(yij).

If it is false, then there exist N = {y0, . . . , yn} and {yi0 , . . . , yik} ⊂ N such that

T(ϕN(�k)) �⊂
k⋃

j=0

G(yij).
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Hence there exist ŷ ∈ ϕN(�k) and ẑ ∈ T(ŷ) such that ẑ /∈ G(yij) for all j = 0, . . . , k. It
follows that

{yi0 , . . . , yik} ⊂ N
⋂

(Y\G−1(ẑ)).

By (3), we have

ϕN(�k) ⊂ Y\M−1(ẑ).

Since ŷ ∈ ϕN(�k), we obtain ŷ /∈ M−1(ẑ) and hence ẑ /∈ M(ŷ). By (2), ẑ /∈ T(ŷ), which
contradicts the fact ẑ ∈ T(ŷ). This show that G is a generalized KKM mapping with
respect to T. Since G(y) ⊂ F(y) for each y ∈ Y by (2), F is also a generalized KKM
mapping with respect to T. All condition of Theorem 3.3 are satisfied. By Theorem
3.3,

T(Y)
⋂




⋂

y∈Y

F(y)



 �= ∅.

Corollary 3.1 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) is a compact mapping and F, M : Y → 2Z be set-valued mappings such
that

(1) F has transfer compactly closed values,
(2) for each y ∈ Y, T(y) ⊂ M(y),
(3) for each z ∈ Z, Y\M−1(z) is a FC-subspace of Y relative to Y\F−1(z).

Then T(Y)
⋂ (⋂

y∈Y F(y)
)

�= ∅.

Proof The conclusion of Corollary 3.1 holds from Theorem 3.4 with F = G.

Corollary 3.2 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) is a compact mapping and F : Y → 2Z be set-valued mappings such that

(1) F has transfer compactly closed values,
(2) for each z ∈ Z, Y\T−1(z) is a FC-subspace of Y relative to Y\F−1(z).

Then T(Y)
⋂ (⋂

y∈Y F(y)
)

�= ∅.

Proof The conclusion of Corollary 3.2 holds from Corollary 3.1 with M = T.
By Lemma 2.5, Theorem 3.4 has the following equivalent form.

Theorem 3.5 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈ KKM
(Y, Z) is a compact mapping and F, G, M : Y → 2Z be set-valued mappings such that

(1) F has transfer compactly closed values,
(2) for each y ∈ Y, G(y) ⊂ F(y) and T(y) ⊂ M(y),
(3) G is a generalized KKM mapping with respect to M.

Then T(Y)
⋂ (⋂

y∈Y F(y)
)

�= ∅.
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4 Section theorems and coincidence theorems

In this section, by applying our KKM type theorems obtained in above section, some
new section theorems and coincidence theorems are established in FC-spaces.

Theorem 4.1 Let (Y, {ϕN}) be a FC-space, Z be a topological space and let T ∈
KKM(Y, Z) is a compact mapping. Let A, B, M be subsets of Z × Y such that

(1) The mapping P−1 : Y → 2Z is transfer compactly open-valued, where P : Z →
2Y is defined by P(z) = {y ∈ Y : (z, y) /∈ A} for all z ∈ Z,

(2) for all y ∈ Y and z ∈ T(y), (z, y) ∈ M and B ⊂ A,
(3) for each z ∈ Z, the set {y ∈ Y : (z, y) /∈ M} is a FC-subspace of Y relative to the

set {y ∈ Y : (z, y) /∈ B}.
Then there exists a point ẑ ∈ T(Y) such that {ẑ} × Y ⊂ A.

Proof Define set-valued mappings F : Z → 2Y and G, M : Y → 2Z as follows:

F(z) = {y ∈ Y : (z, y) ∈ A}, ∀ z ∈ Z and

G(y) = {z ∈ Z : (z, y) ∈ B}, M(y) = {z ∈ Z : (z, y) ∈ M}, ∀ y ∈ Y.

Since F−1(y) = {z ∈ Z : (z, y) ∈ A} = Z\P−1(y), by (1) and Lemma 2.2, F−1 : Y → 2Z

is transfer compactly closed-valued. By (2), T(y) ⊂ M(y) and G(y) ⊂ F−1(y) for all
y ∈ Y. By the definition of G and M, we have Y \M−1(z) = {y ∈ Y : (z, y) /∈ M}
and Y \G−1(z) = {y ∈ Y : (z, y) /∈ B} for each z ∈ Z. It follows from the condition
(3) that for each z ∈ Z, Y\M−1(z) is a FC-subspace of Y relative to Y\G−1(z). All
conditions of Theorem 3.4 are satisfied. By Theorem 3.4, T(Y)

⋂
(
⋂

y∈Y F−1(y)) �= ∅.

Hence there exists ẑ ∈ T(Y) such that ẑ ∈ F−1(y) for all y ∈ Y, i.e. {ẑ} × Y ⊂ A. This
completes the proof.

Corollary 4.1 Let (Y, {ϕN}) be a FC-space, Z be a topological space and let T ∈
KKM(Y, Z) is a compact mapping. Let A, B be subsets of Z × Y such that

(1) The mapping P−1 : Y → 2Z is transfer compactly open-valued, where P : Z →
2Y is defined by P(z) = {y ∈ Y : (z, y) /∈ A} for all z ∈ Z,

(2) for all y ∈ Y and z ∈ T(y), (z, y) ∈ B and B ⊂ A,
(3) for each z ∈ Z, the set {y ∈ Y : (z, y) /∈ B} is a FC-subspace of Y.

Then there exists a point ẑ ∈ T(Y) such that {ẑ} × Y ⊂ A.

Proof The conclusion of Corollary 4.1 holds from Theorem 4.1 with M = B.

Remark 4.1 Corollary 4.1 generalizes Theorem 2.3 of Lin et al. [14] from topolog-
ical vector spaces to FC-space without any convexity structure under much weak
assumptions.

Corollary 4.2 Let (Y, {ϕN}) be a FC-space, Z be a topological space. Let A ⊂ Z × Y
such that

(1) The mapping P−1 : Y → 2Z is transfer compactly open-valued, where P : Z →
2Y is defined by P(z) = {y ∈ Y : (z, y) /∈ A} for all z ∈ Z,

(2) for each z ∈ Z, the set {y ∈ Y : (z, y) /∈ B} is a FC-subspace of Y,
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(3) there exist a compact subset K of Z and a closed set B ⊂ A such that for each
y ∈ Y, T(y) = {z ∈ K : (y, z) ∈ B} is nonempty acyclic.

Then there exists a point ẑ ∈ T(Y) such that {ẑ} × Y ⊂ A.

Proof Let (y, z) ∈ Gr(T). Then there exists a net {(yα , zα)} in Gr(T) such that
(yα , zα) → (y, z). Hence we have {zα} ⊂ K and {(yα , zα)} ⊂ B. Since K is compact and
B is closed, we have z ∈ K and (y, z) ∈ B. This implies that z ∈ T(y) and (y, z) ∈ Gr(T).
Hence T : Y → 2Z has closed graph and T(Y) ⊂ K. By Corollary 3.1.9 of Aubin
and Ekeland [25, p.111], T is upper semicontinuous with compact values. By (3), T is
an upper semicontinuous set-valued mapping with nonempty compact acyclic values.
Hence T ∈ V(Y, Z) ⊂ KKM(Y, Z) is a compact mapping. All conditions of Corollary
4.1 are satisfied. The conclusion of Corollary 4.2 holds from Corollary 4.1.

Remark 4.2 Corollary 4.2 generalizes Theorem 2.4 of Lin et al. [14], Theorem 3 of
Ha [26] from topological vector spaces to FC-spaces without any convexity structure
under weaker assumptions.

Corollary 4.3 Let (Y, {ϕN}) be a FC-space, Z be a topological space and let T ∈
KKM(Y, Z) is a compact mapping. Let A ⊂ Z × Y such that

(1) The mapping P−1 : Y → 2Z is transfer compactly open-valued, where P : Z →
2Y is defined by P(z) = {y ∈ Y : (z, y) /∈ A} for all z ∈ Z,

(2) for all y ∈ Y and z ∈ T(y), (z, y) ∈ A,
(3) for each z ∈ Z, the set {y ∈ Y : (z, y) /∈ A} is a FC-subspace of Y.

Then there exists a point ẑ ∈ T(Y) such that {ẑ} × Y ⊂ A.

Proof The conclusion of Corollary 4.3 holds from Corollary 4.1 with A = B.

Theorem 4.2 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) be a compact mapping and F : Y → 2Z, H, P : Z → 2Y be set-valued
mappings such that

(1) F is transfer compactly closed-valued and for each z ∈ Z, Y �= F−1(z),
(2) for each y ∈ Y, Z\H−1(y) ⊂ F(y),
(3) for each z ∈ Z, P(z) is a FC-subspace of Y relative to H(z).

Then there exists (y0, z0) ∈ Y × Z such that z0 ∈ T(y0) and y0 ∈ P(z0).

Proof Define set-valued mappings G, M : Y → 2Z by

G(y) = Z\H−1(y), and M(y) = Z\P−1(y), ∀ y ∈ Y.

Then, G(y) ⊂ F(y) for each y ∈ Y by (2). By the definition of G and M, it is easy
to show that H(z) = Y \G−1(z) and P(z) = Y \M−1(z) for each z ∈ Z. By (3), we
have that for each z ∈ Z, Y \M−1(z) is a FC-subspace of Y relative to Y \G−1(z).
Now suppose the conclusion is false, then T(y)

⋂
P−1(y) = ∅ for all y ∈ Y. Hence for

each y ∈ Y, T(y) ⊂ Z\P−1(y) = M(y). All conditions of Theorem 3.4 are satisfied.
By Theorem 3.4, T(Y)

⋂
(
⋂

y∈Y F(y) �= ∅. Therefore, there exists z0 ∈ T(Y) such that

z0 ∈ F(y) for all y ∈ Y, i.e., Y = F−1(z0), which contradicts (1). Hence there exists
(y0, z0) ∈ Y × Z such that z0 ∈ T(y0) and y0 ∈ P(z0).
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Corollary 4.4 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) be a compact mapping and F : Y → 2Z, P : Z → 2Y be set-valued
mappings such that

(1) F is transfer compactly closed-valued and for each z ∈ Z, Y �= F−1(z),
(2) for each y ∈ Y, Z\P−1(y) ⊂ F(y),
(3) for each z ∈ Z, P(z) is a FC-subspace of Y.

Then there exists (y0, z0) ∈ Y × Z such that z0 ∈ T(y0) and y0 ∈ P(z0).

Proof The conclusion of Corollary 4.4 from Theorem 4.2 with P = H.

Theorem 4.3 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) be a compact mapping and H, P, Q : Z → 2Y be set-valued mappings
such that

(1) Q−1 is transfer compactly open-valued and for each z ∈ Z, Q(z) �= ∅,
(2) for each z ∈ Z, Q(z) ⊂ H(z),
(3) for each z ∈ Z, P(z) is a FC-subspace of Y relative to H(z).

Then there exists (y0, z0) ∈ Y × Z such that z0 ∈ T(y0) and y0 ∈ P(z0).

Proof Define set-valued mapping F : Y → 2Z by F(y) = Z\Q−1(y) for all y ∈ Y.
By (1) and Lemma 2.2, F is transfer compactly closed-valued and for each z ∈ Z,
Y �= F−1(z) since F−1(z) = Y\Q(z) by the definition of F. The condition (1) of Theo-
rem 4.2 is satisfied. By (2), we have that for each y ∈ Y, Z\H−1(y) ⊂ Z\Q−1(y) = F(y).
The condition (2) of Theorem 4.2 is satisfied. All conditions of Theorem 4.2 are satis-
fied. By Theorem 4.2, there exists (y0, z0) ∈ Y ×Z such that z0 ∈ T(y0) and y0 ∈ P(z0).

Corollary 4.5 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) be a compact mapping and P, Q : Z → 2Y be set-valued mappings such
that

(1) Q−1 is transfer compactly open-valued and for each z ∈ Z, Q(z) �= ∅,
(2) for each z ∈ Z, P(z) is a FC-subspace of Y relative to Q(z).

Then there exists (y0, z0) ∈ Y × Z such that z0 ∈ T(y0) and y0 ∈ P(z0).

Proof The conclusion of Corollary 4.5 holds from Theorem 4.3 with H = Q.

Corollary 4.6 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) be a compact mapping and Q : Z → 2Y be set-valued mappings such that

(1) Q−1 is transfer compactly open-valued and for each z ∈ Z, Q(z) �= ∅,
(2) for each z ∈ Z, Q(z) is a FC-subspace of Y.

Then there exists (y0, z0) ∈ Y × Z such that z0 ∈ T(y0) and y0 ∈ Q(z0).

Proof The conclusion of Corollary 4.6 holds from Corollary 4.5 with P = Q.

Remark 4.3 Theorem 4.3, Corollaries 4.5 and 4.6 generalize Theorem 2.5 of Lin et al.
[14] from topological vector spaces to FC-spaces under much weak assumptions.

When T ∈ KKM(Y, Z) is not compact, we have the following result.
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Theorem 4.4 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) and H, P, Q : Z → 2Y be set-valued mappings such that

(1) Q−1 is transfer compactly open-valued and for each z ∈ Z, Q(z) �= ∅,
(2) for each z ∈ Z, Q(z) ⊂ H(z),
(3) for each z ∈ Z, P(z) is a FC-subspace of Y relative to H(z).
(4) for each compact subset D of Y, T(D) is compact in Z,
(5) there exists a compact subset K of Z such that for each N ∈ 〈Y〉, there is a compact

FC-subspace LN of Y containing N satisfying

T(LN)\K ⊂
⋃

y∈LN

c intQ−1(y).

Then there exists (y0, z0) ∈ Y × Z such that z0 ∈ T(y0) and y0 ∈ P(z0).

Proof Since K is a compact subset of Z, Q has nonempty values and Q−1 is transfer
compactly open-valued by (1), it follows from Lemma 2.1 that

K =
⋃

y∈Y

(
c intQ−1(y)

⋂
K

)
.

Hence there exists N = {y0, . . . , yn} ∈ 〈Y〉 such that

K =
n⋃

i=0

(
c intQ−1(yi)

⋂
K

)
⊂

n⋃

i=0

c intQ−1(yi).

By (5), there exists a compact FC-subspace LN of Y containing N satisfying

T(LN)\K ⊂
⋃

y∈LN

c intQ−1(y).

Hence, we have

T(LN) =
⋃

y∈LN

(
c intQ−1(y)

⋂
T(LN)

)
=

⋃

y∈LN

intT(LN)

(
Q−1(y)

⋂
T(LN)

)
.

Since LN is a compact FC-subspace of Y, T(LN) is compact by (4). Since T ∈
KKM(Y, Z) and LN is a FC-subspace of Y, by Lemma 2.4, the restriction T|LN

of T on LN is such that T|LN ∈ KKM(LN , Z) is compact. Define set-valued mappings
H1, P1, Q1 : T(LN) → 2LN by

H1(z) = H(z)
⋂

LN , P1(z) = P(z)
⋂

LN and Q1(z) = Q(z)
⋂

LN ,

∀ z ∈ T(LN).

It is easy to check that TLN , H1, P1, Q1 satisfy all conditions of Theorem 4.3. Hence,
there exist z0 ∈ T(LN) ⊂ Z and y0 ∈ LN ⊂ Y such that z0 ∈ T|LN (y0) = T(y0) and
y0 ∈ P1(z0) ⊂ P(z0). This completes the proof.

Corollary 4.7 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) and P, Q : Z → 2Y be set-valued mappings such that

(1) Q−1 is transfer compactly open-valued and for each z ∈ Z, Q(z) �= ∅,
(2) for each z ∈ Z, P(z) is a FC-subspace of Y relative to Q(z).
(3) for each compact subset D of Y, T(D) is compact in Z,
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(4) there exists a compact subset K of Z such that for each N ∈ 〈Y〉, there is a compact
FC-subspace LN of Y containing N satisfying

T(LN)\K ⊂
⋃

y∈LN

c intQ−1(y).

Then there exists (y0, z0) ∈ Y × Z such that z0 ∈ T(y0) and y0 ∈ P(z0).

Proof The conclusion of Corollary 4.7 holds from Theorem 4.4 with H = Q.

Corollary 4.8 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) and Q : Z → 2Y be set-valued mappings such that

(1) Q−1 is transfer compactly open-valued and for each z ∈ Z, Q(z) �= ∅,
(2) for each z ∈ Z, Q(z) is a FC-subspace of Y.
(3) for each compact subset D of Y, T(D) is compact in Z,
(4) there exists a compact subset K of Z such that for each N ∈ 〈Y〉, there is a compact

FC-subspace LN of Y containing N satisfying

T(LN)\K ⊂
⋃

y∈LN

c intQ−1(y).

Then there exists (y0, z0) ∈ Y × Z such that z0 ∈ T(y0) and y0 ∈ P(z0).

Proof The conclusion of Corollary 4.8 holds from Corollary 4.7 with P = Q.

Remark 4.4 Theorem 4.4, Corollaries 4.7 and 4.8 generalize Theorem 2.6 of Lin et al.
[14] from topological vector spaces to FC-spaces under weaker assumptions.

Theorem 4.5 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) and A, B, M be subsets of Z × Y such that

(1) The mapping Q−1 : Y → 2Z is transfer compactly open-valued, where Q : Z →
2Y is defined by Q(z) = {y ∈ Y : (z, y) /∈ A} for all z ∈ Z,

(2) for all y ∈ Y and z ∈ T(y), (z, y) ∈ M and B ⊂ A,
(3) for each z ∈ Z, the set {y ∈ Y : (z, y) /∈ M} is a FC-subspace of Y relative to the

set {y ∈ Y : (z, y) /∈ B}.
(4) for each compact subset D of Y, T(D) is compact in Z,
(5) there exists a compact subset K of Z such that for N ∈ 〈Y〉, there is a compact

FC-subspace LN of Y containing N satisfying

T(LN)
⋂




⋂

y∈LN

ccl{z ∈ Z : (z, y) ∈ A}


 ⊂ K.

Then there exists a point ẑ ∈ Z such that {ẑ} × Y ⊂ A.

Proof Suppose the conclusion is false, then for each z ∈ Z, there exists a point y ∈ Y
such that (z, y) /∈ A and hence for each z ∈ Z, Q(z) �= ∅. Define set-valued mapping
H, P : Z → 2Y by

H(z) = {y ∈ Y : (z, y) /∈ B} and P(z) = {y ∈ Y : (z, y) /∈ M}, ∀ z ∈ Z.
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Since B ⊂ A by (2), we have Q(z) ⊂ H(z) for each z ∈ Z. By (3) and the definition of
H and P, for each z ∈ Z, P(z) is a FC-subspace of Y relative to H(z). By (4), we have

T(LN)\K ⊂ T(LN)\


T(LN)
⋂

(
⋂

y∈LN

ccl{z ∈ Z : (z, y) ∈ A})




⊂ Z\
⋂

y∈LN

ccl{z ∈ Z : (z, y) ∈ A}

=
⋃

y∈LN

c int{z ∈ Z : (z, y) �∈ A} =
⋃

y∈LN

c intQ−1(y).

All conditions of Theorem 4.4 are satisfied. By Theorem 4.4, there exists (y0, z0) ∈
Y × Z such that z0 ∈ T(y0) and y0 ∈ P(z0). It follows that z0 ∈ T(y0) and (z0, y0) /∈ M
which contradicts the condition (2). Hence there exists ẑ ∈ Z such that {ẑ} × Y ⊂ A.

Corollary 4.9 Let (Y, {ϕN}) be a FC-space and Z be a topological space. Let T ∈
KKM(Y, Z) and A ⊂ Z × Y such that

(1) The mapping Q−1 : Y → 2Z is transfer compactly open-valued, where Q : Z →
2Y is defined by Q(z) = {y ∈ Y : (z, y) /∈ A} for all z ∈ Z,

(2) for all y ∈ Y and z ∈ T(y), (z, y) ∈ A,
(3) for each z ∈ Z, the set {y ∈ Y : (z, y) /∈ A} is a FC-subspace of Y,
(4) for each compact subset D of Y, T(D) is compact in Z,
(5) there exists a compact subset K of Z such that for each N ∈ 〈Y〉, there is a compact

FC-subspace LN of Y containing N satisfying

T(LN)
⋂




⋂

y∈LN

ccl{z ∈ Z : (z, y) ∈ A}


 ⊂ K.

Then there exists a point ẑ ∈ Z such that {ẑ} × Y ⊂ A.

Proof The conclusion of Corollary 4.9 holds from Theorem 4.5 with A = B = M.

Remark 4.5 Theorem 4.5 and Corollary 4.9 generalize Theorem 2.8 of Lin et al. [14]
from topological vector spaces to FC-spaces under weaker assumptions.

In order to distinguishing our results from others, now we state the following special
cases of our results.

Theorem 4.6 Let Y be a convex space and Z be a topological space. Let T ∈ KKM(Y, Z)

and H, P, Q : Z → 2Y be set-valued mappings such that

(1) Q−1 is a transfer compactly open-valued mapping,
(2) for each z ∈ Z, Q(z) �= ∅ and Q(z) ⊂ H(z),
(3) for each z ∈ Z and each N ∈ 〈H(z)〉, co(N) ⊂ P(z).
(4) for each compact subset D of Y, T(D) is compact in Z,
(5) there exists a compact subset K of Z such that for each N ∈ 〈Y〉, there is a compact

convex subset LN of Y containing N satisfying

T(LN)\K ⊂
⋃

y∈LN

c intQ−1(y).

Then there exists (y0, z0) ∈ Y × Z such that z0 ∈ T(y0) and y0 ∈ P(z0).
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Proof For each N = {y0, . . . , yn} ∈ 〈Y〉, define a mapping ϕN : �n → Y by

ϕn(λ) =
n∑

i=0

λiyi, ∀ λ = (λ0, . . . , λn) ∈ �n.

Clearly, ϕN is continuous and ϕN(�n) = co(N). Hence (Y, ϕN) is a FC-space and each
convex subset of Y is a FC-subspace of (Y, ϕN). The condition (3) implies that for
each z ∈ Z, P(z) is a FC-subspace of Y relative to H(z). All conditions of Theorem
4.4 are satisfied. The conclusion of Theorem 4.6 holds from Theorem 4.4.

Corollary 4.10 Let Y be a convex space and Z be a topological space. Let T ∈
KKM(Y, Z) and P : Z → 2Y be set-valued mappings such that

(1) P−1 is a transfer compactly open-valued mapping,
(2) for each z ∈ Z, P(z) is nonempty convex,
(3) for each compact subset D of Y, T(D) is compact in Z,
(4) there exists a compact subset K of Z such that for each N ∈ 〈Y〉, there is a compact

convex subset LN of Y containing N satisfying

T(LN)\K ⊂
⋃

y∈LN

c intP−1(y).

Then there exists (y0, z0) ∈ Y × Z such that z0 ∈ T(y0) and y0 ∈ P(z0).

Proof The conclusion of Corollary 4.10 holds from Theorem 4.6 with P = Q = H.

Remark 4.6 Corollary 4.10 generalizes Theorem 2.6 of Lin et al. [14] from P−1 being
a transfer open-valued mapping to P−1 being a transfer compactly open-valued map-
ping. Hence Theorem 4.4 further generalizes Theorem 2.6 of Lin et al. [14] in following
ways: (1) from convex spaces with linear structure to FC-spaces without any convexity
structure; (2) from the transfer open-valued mapping to transfer compactly open-val-
ued mapping; (3) the class KKM(Y, Z) in Theorem 4.4 includes the corresponding
class KKM(Y, Z) in Theorem 2.6 of [14] as proper subclass; (4) from two set-valued
mappings to four set-valued mappings.

Finally, we emphasis that the most of KKM type theorems, coincidence theorems
and section theorems stated in topological vector spaces, H-spaces, G-convex spaces
and L-convex spaces in previous works are all special cases of our results. In the
study of optimization problems (vector) equilibrium problems and many nonlinear
problems, the domain and range of mappings may not have the convexity structure.
Our results in this paper can be applied to deal with these problems without convex-
ity structure, but the corresponding results in topological vector spaces can not be
applied. In fact, the results in this paper have been applied to establish some existence
theorems of solutions for vector equilibrium problems in FC-spaces in a follow-up
paper with same title.

Acknowledgements This project was supported by the NSF of Sichuan Education Department of
China (2003A081) and SZD0406.



596 J Glob Optim (2006) 36:581–596

References

1. Knaster, H., Kuratowski, C., Mazurkiewicz, S.: Ein Beweis des Fixpunktsatzes für n-dimensionale
simplexe. Fundam. Math. 14, 132–137 (1929)

2. Fan, Ky.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)
3. Ding, X.P.: KKM type theorems and coincidence theorems on K-convex spaces. Acta. Math. Sci.

22(3), 419–426 (2002)
4. Ding, X.P.: Generalized G-KKM theorems in generalized convex spaces and their applications. J.

Math. Anal. Appl. 266(1), 21–37 (2002)
5. Ding, X.P.: Generalized L-KKM type theorems in L-convex spaces with applications. Comput.

Math. Appl. 43, 1249–1256 (2002)
6. Ding, X.P.: KKM type theorems, minimax inequalities and saddle point theorems in generalized

convex spaces. Acta. Math. Sin. (in Chinese) 47(4), 711–722 (2004)
7. Ding, X.P.: Generalized R-KKM type theorems in topological spaces and applications. J. Sichuan

Norm. Univ. (NS) 28(5), 505–513 (2005)
8. Ding, X.P., Liou, Y.C., Yao, J.C.: Generalized R-KKM type theorems in topological spaces with

applications. Appl. Math. Lett. 18(12), 1345–1350 (2005)
9. Deng, L., Xia, X.: Generalized R-KKM theorems in topolgical space and their applications.

J. Math. Anal. Appl. 285, 679–690 (2003)
10. Chang, T.H., Yen, C.L.: KKM property and fixed point theorems. J. Math. Anal. Appl. 203, 224–235

(1996)
11. Park, S., Singh, S.P., Watson, B.: Some fixed point theorems for composites of acyclic maps. Proc.

Am. Math. Soc. 121, 1151–1158 (1994)
12. Park, S., Kim, H.: Foundations of the KKM theory on generalized convex spaces. J. Math. Anal.

Appl. 209(2), 551–571 (1997)
13. Ben-El-Mechaiekh, H., Deguire, P.: Approachability and fixed point for non-convex set-valued

maps. J. Math. Anal. Appl. 170, 477–500 (1992)
14. Lin, L.J., Ansari, Q.H., Wu, J.Y.: Geometric properties and coincidence theorems with applications

to generalized vector equilibrium problems. J. Optim. Theory Appl. 117(1), 121–137 (2003)
15. Lin, L.J., Wan, W.P.: KKM type theorems and coincidence theorems with applications to the

existence of equilibria. J. Optim. Theory Appl. 123(1), 105–122 (2004)
16. Lin, L.J., Chen, H.L.: The study of KKM theorems with applications to vector equilibrium prob-

lems and implicit vector variational inequalities problems. J. Global Optim. 32, 135–157 (2005)
17. Ding, X.P.: Coincidence theorems and equilibria of generalized games. Indian J. Pure Appl. Math.

27(11), 1057–1071 (1996)
18. Lin, L.J.: System of coincidence theorems with applications. J. Math. Anal. Appl. 285(2), 408–418

(2003)
19. Ding, X.P.: Coincidence theorems in topological spaces and their applications. Appl. Math. Lett.

12, 99–105 (1999)
20. Ding, X.P.: Maximal element theorems in product FC-spaces and generalized games. J. Math.

Anal. Appl. 305(1), 29–42 (2005)
21. Horvath, C.D.: Contractibility and general convexity. J. Math. Anal. Appl. 156(2), 341–357 (1991)
22. Ben-El-Mechaiekh, H., Chebbi, S., Flornzano, M., Llinares, J.V.: Abstract convexity and fixed

points. J. Math. Anal. Appl. 222, 138–150 (1998)
23. Chang, T.H., Huang, Y.Y., Jeng, J.C., Kuo, K.W.: On S-KKM property and related topies. J. Math.

Anal. Appl. 229, 212–227 (1999)
24. Lin, L.J.: Applications of a fixed theorem in G-convex space. Nonlinear Anal. 46, 601–608 (2001)
25. Aubin, J.P., Ekeland, I.: Applied nonlinear analysis. Wiley, New York (1984)
26. Ha, C.W.: Minimax and fixed-point theorems. Math. Annal. 248, 73–77 (1980)


